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recting K, o values or K, values in table 2-14
for panel size by means of figure 2-37. In using
these figures b’/a 1s first obtained from table 2-14
and b/b’ computed. For a more exact determi-
nation of K, or K, or to determine these buckling
constants for a plywood construction different
from those specified in AN-NN-P-511b or
ficures 2-30 to 2-36, Qalculate E;meEH in ac-
cordance with section 2.52, read K;« or K, and
bja from figures 2-38 to 2-41 and correct for
panel size by means of figure 2-37.

2.7151. Combined compression (or tension) end
shear. The analytical method of determining the
critical buckling stresses for rectangular panels
subjected to combined loadings is quite compli-
cated, and only the graphical solutions for a few
types of plywood construction are given in figures
2-30 to 2-36.

When the plywood construction being used 1s
not the same as any of those illustrated, its
buckling constants may be obtained by a straight
line interpolation (or extrapolation), on the basis

B2

E,. .
of =% of the buckling constants for two

Bt By
plywood constructions whose values of the ratio

En
Ept+Ey.
under consideration. The values of these ratios
for the plywood -constructions considered in
figures 2-30 to 2-36 may be calculated with
sufficient accuracy by assuming E,=0.05 H,.

These figures apply to panels of infinite length
and values of the buckling constants from the
curves must be. corrected for actual panel length.
Values of the shear constant K, and the com-
pression constant K, = are indicated on the ver-
tical and horizontal axes, respectively. The
points at which the curve crosses these axes give
the values of K, » or K. at which buckling will
just occur in a panel of infinite length in either
pure shear or pure compression. The particular
combination of stresses represented by each of
the four quadrants is shown by the small stress
sketches. Buckling will occur under these com-
bined stresses whenever the location of a point
K. o, K., lies on or outside the curve.

are fairly close to that of the plywood
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Table 2-14. Buckling constanis for plywood !

i
P THREE-PLY
Shear Compression
L
) Face 0°
grain 0° 90° . 0 and a0° 15°
-~ angle Face grainin Face grain in ag°
L tension compression
Nomi-
T ik | Ue ¥ia (K w b/a (e bia (Kw ba Vie | (Kdw | tia | (Koa | bYa
L‘ ness
(1 2 (3) (4 {5 (6) ) (8) )] (10} (11} 12) (13) e8]
I Inch
0. 035 0.60 ¢+ 2.13 2.05 ' 0.80 ! 0. 57 0. 95 3. 50 1. 74 1. 88 0.71 0. 33 0. 86 0. 84
. 070 .80 ¢ 179 2,11 . B8 .78 1. 86 3. 3¢ 1.72 1. 62 . 82 . 62 1. 08 .9
- . 100 .75 7 1.85 2. 10 . 66 .73 1. 03 3. 38 1. 72 1. 67 . 80 . 60 1. 03 .90
. 125 .88, 1.70 213 .71 . 87 1. 10 3. 27 1.71 1. 55 . 87 . 65 1. 17 .93
.. 135 .94 1,65 2. 14 .72 .93 1.12 3.22 1. 70 1. 50 .89 . B7 1.23 .94
. 185 .95 ¢ 1.64 2.14 .73 .94 1.13 3.22 PLT0 1. 50 .90 . 68 1. 24 .94
v | |
- FIVE-PLY
L |
‘ 0. 160 1. 25 1. 42 2,13 0.83 1. 29 1. 26 2.91 1. 66 1. 31 1.02 0.77 1. 49 0. 97
b . 190 1. 35 1. 36 2,12 .87 1. 41 1. 30 2.81 1. 64 1. 26 1. 04 . 80 1. 56 .98
. - 225 1. 37 1. 35 2. 11 . 88 1. 43 1. 31 2.79 1. 63 1. 25 1. 05 .81 1. 57 .98
i . 2350 1. 30 1. 38 2. 12 -85 1. 35 1. 28 2. 86 1. 64 1. 28 1. 04 .79 1. 33 . 98
L . 315 1. 29 1.39 212 .85 1. 34 1. 28 2. 87 1. 65 1. 29 1. 03 .78 1. 52 .98
. 375 1. 48 1. 28 2. 08 .92 1. 57 1. 36 2. 66 1. 60 1. 19 1. 08 . B4 1. 64 . 99
L SEVEN-PLY (all plies of equal thickness)
E Any 140 1.32 2. 10 0. 89 1. 46 1. 32 275 Le62 1. 23 1. 06 0.82 1.54 0. 99
- NINE-PLY (all plies of equal thickness)
Any 1. 52 i 1. 26 2.06 0. 94 1. 63 1. 37 260, 1.59 1. 17 1. 09 ! 0. 86 ' 1. 66 0.99
g | 1 ! | ‘
i
b ELEVEN-PLY ({(ail plies of equal thickness)
| | ]
L Any 1. 59 ;L 22 2.03 0. 86 1. 72 1. 40 2.52 1 1.38 1. 14 1. 10 0.88! 1.70 ; 0. 99
| | |
1 o
P ! The buckling constants listed in this table correspond only to the plywoed thicknesses and coastructions listed in table 2-13 that cdrrespond to Army-
E Navy specification AN=-NN-P-511b (Plywood and Veneer; Aircraft Flat Panel). The values in this table were computed as follows: For each construetion
S

given in table 2-13 a value of f%‘ was computed from columns 5 and 6 of table 2-13. T hese values for each thickness were averaged and the average values
Jw fr

o —

-

panel to its width (a).

{~  The curve marked 8'/a is the ratio of half the
L wave length (b") of a buckle in an infinitely long
This ratio is to be used in
conjunction with figures 2-37 to 2—41 in obtaining

were used in entering figures 2-38, 2-39, 2-40, and 2-41 from which the values of this table were obtained. For a more exact determination of these buckling
» constants or to determine the buckling constants of 2 plywood construction different from those specified in AN-NN-P-511b, see section 2.7,

the correction factors for panels of finite length
to be applied to K, -

The curves in figures 2-30 to 2-36 marked v
give the slope of the panel wrinkles with respect
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to the O-X axis indicated on the stress sketches.
The procedure in the use ot these figures is as
follows:

(1) From the analysis the shear stress (fs)
and the compression (7.) or tension stress
(=fc) acting on a particular plywood
panel will have been calculated.

(2) Determine the ratio f,/f, and, on the figure
giving the same plywood construction
and angle 8, draw a line through the
origin having a slope (positive or nega-
tive) equal to this ratio. When the ply-
wood construction is not the same as that
given in the figures, this procedure for
determining the buckling constant will
have to be run through on the two most
similar constructions and an interpola
tion of the results made on the basis of

En
E,ru- + Ef:r

(3) The point at which the constructed line
crosses the curve gives the critical buck-
ling constants K, and X.. at which an
infinitely long panel will just buckle
when subjected to the same ratio of shear
to compression that exists on the panel
in question.

(4) Read the value of #'/a for the point on
the b’/a curve which is obtained by pro-
Jecting horizontally from K,. deter-
mined in step (3).

(5) From the pane! dimensions compute b’
and b/b’.

(6) Figures 2-37 to 2—41 will give the ratio of
K,/K,. from which the value of K, can
be computed (K, is always taken as
positive). ,

(7) The critical buckling shear stress (F..)
may then be determined by equation
(2:80). This represents the maximum
allowable shear stress which the panel in
question can sustain without buckling
when subjected simultaneously to a com-
pressive stress equal to that given in
step (1.

2.72. STrENGTH AFTER BUCKLING.

2.721. General. Plywood panels may sustain
greater Joads than those sufficient to cause buck-
ling, When buckling takes place the stresses

within the panel are redistributed, the maximum .

stresses occurring at the edges. The panel will
continue to accept load until these stresses reach

92

the ultimate value. The load at failure is obtained
from empirical curves in which the ratio of the
average stress at failure to the ultimate strength
of the plywood is plotted against the ratio of the
width of the panel to the width of & hypothetical
panel that will fail at its buckling load.

2.722. Compression (B=any angle). The ab-
scissa of figure 243 is obtained from the equation

a Fcu@
p— — 9.
a, ‘\’ ﬁjccr (HSI)

n which F, is obtained from equation (2:51) or
(2:52) and F., from equation (2:77) or (2:79).
The ordinates give the ratio of the average
stress at which failure will occur to the ultimate
compressive strength (F..s) of the plywood.

2.723. Shear (8=0°, 45°, or 90°). The abscissa
of figure 2-44 is ohtained from the equation

LA
O

a,

(2:82)

in which F, is obtained from equation {2:50)
(2:57), or (2:58) and F,. from equation (2:77) or
{2:80). The ordinates gi ‘e the ratio of the aver-
age stress at which ailure will take place to the
wltimate shear stress (F) of the plywood.

2.73. ALLOWABLE SHEAR I8 PLywoop WeBs.

2.730. General. Beams are required to have a
high strength-weight ratio and, therefore, they
are generally designed so that they will fail in
shear at about the load which will cause bending
failures. A higher strength-weight ratio is usually
obtained if the beams fail in bending before shear
failure can occur.

Plywood when used as webs of beams is sub-
jected to different stress conditions from those
when it is used in simple shear frames. It is es-
sential, therefore, that tests to determine the
strengths of shear webs be made upon specimen
beams designed with flanges only sufficiently
strong to hold the load at which shear failure is
expected. Plywood webs tested in beavy shear
frames with hinged corners will give shear strengths
that are too high for direct application to beam
design.

In any case where buckling is obtained, the
stiffeners must have adequate strength to resist
the additional loads due to such buckling, and the
webs must be fastened to the flanges in such a
manner as to overcome the tendency of the buckles
in the web to project themselves into this fastening
and cause premature failure (ref. 2-23 and 2423,
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2.731. Allowable shear stresses. The sallowable
shear stresses of plvwood webs having the face
grain direction at 0°, 45°, or 90° to the main beam
axis may be obtained from figure 2—45.

Values of the parameter-;z— are obtained from

[

equation (2:82) as explained in section 2.723.
Each curve of the family shown in the figure is
similar to the curve of figure 2—44. The allow-
able shear stress (F,) for the web can be obtained
in terms of F,/Fy from figure 2-45. (For a/a,
values greater than 4.0, the a/b curves may be
extrapolated as straight lines to meet at a point
corresponding to a/a,—10 and F,/Fu=0.2.)

The direct use of figure 2-45 for any type of
beam having 45° shear webs has been verified by
numerous tests of I- and box-beams. A few ex-
ploratory tests of beams having 0° and 90° plywood
shear webs has indicated that the allowable ulti-
mate shear stresses obtained for these construc-
tions by using figure 2-45 are conservative.

Plywood shear webs of 45° are more efficient
than 0° or 90° webs.

The designer is cautioned that box beams may
fail at a load lower than that indicated by the
strength of the webs as shown in figure 2-45, be-
cause of inadequate glue areas of webs at stiffeners
or flanges. Such premature failures result from a
separation of the web from the flanges or stiffeners.

Figure 2-45 contains a parameter ¢/b in the form
of a family of curves. The a/b=1 curve represents
a spacing between stiffeners just equal to the clear
depth between flanges. The curves below a/b=1
should be used for the design of shear webs of
beams whose stiffener spacing exceeds the clear
distance between flanges. The upper set of curves
should be used for the design of beams whose stiff-
ener spacing is less than the clear distance between
flanges.

2.732. Buckling of plywood shear webs. In con-
nection with shear web tests on various types of
beams, it was observed that for plywood webs in
the a/e, range of less than 1.2, buckling was of the
inelastic type that often caused visible damage
soon after buckling and sometimes just as the
buckles appeared for those webs designed to fail in
the neighborhood of Fyu. No accurate ecriteria
can-be presented at this time, but the designer is
cautioned to avoid the use of webs that may be
damaged by buckling before the limit or yicld
stress is reached. The buckling curve established
by these tests is shown in figure 2-45.

2.74. LicuTexiNe Hores. When the computed

96

shear stress for a full depth web of practical design
1s relatively low, as in some rib designs, the effici-
ency, or strength-weight ratio, may be increased
by the careful use of lightening holes and reinforce-
ments. General theoretical or empirical methods
for determining the strength of plywood webs with
lightening holes are not available, and tests should,
therefore, be made for specific cases (ref. 2-64).
2.75. Tors1oNAL STRENGTH aND RIGIDITY oOF
Box Spars. The maximum shear stresses in ply-
wood webs for most types of box spars subjected
to torsion may be calculated from the following

formula.:
. T
J s—m (2:83)
where
t=thickness of one web
b'=mean width of spar (total width minus
thickness of one web)
C’=average of the outside and inside peri-
phery of the ecross section.
The allowable ultimate stress in torsion of ply-
wood webs is determined as in section 2.723.

The torsional rigidity of box beams up to the

* proportional limit, or to the buckling stress (which-

ever is the lesser) is given by the formula:

TC'L

6=4G’tb’(0’— 262

(2:84)

2.76. Prywoop Panxers UxpER NorMaL Loabs.

2.760. General. When rectangular plywood
panels, which have the face grain direction par-
allel or perpendicular to the edges, are subjected
to normal loads, the deflections and in some cases
the stresses developed, are given by the following
approximate formulas. If the maximum panel
deflection exceeds about one-half its thickness, the
formulas for large deflections will give results
which are somewhat more accurate than those
given by the formulas for small deflections (ref.
2-51). '

2.761. Small deflections.

(a¢) Uniform - load—all
ported.

edges simply sup-

4
w,=0.155 KI%
1

(2:85)
where _
w,==deflection at center of panel
p=Ioad per unit area
a=width of plate (short side)
K,=copstant from figure 2-46 (a)
The maximum bending moment at the center

of the panel on a section perpendicular to side a
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may be obtained from figure 2-46 (b). The
maximum bending moment on a section perpen-
dicular to side & is given by the same curve,
provided @ and &, and £, and E, are interchanged
In the abscissa, and @ is replaced by & in the
ordinate. The corresponding stresses can be cal-
culated from the formulas given in section 2.614.
(6) Uniform load—all edges clamped.

w,=0.031 K, (2:86)

pat
E#
where

K,=constant from figure 2-46 (a)

(¢) Concentrated load at center—all edges
simply supported.

- E N\ Pa?

wazo.gau.ﬁg ‘E—.E E‘E (2:87)

where
Ky=constant from figure 2-46 (a).
2.762. Large deflections.
(@) Uniform load-—all edges simply sup-
ported. ~
The relation between the load and
defiection is given by the formula:

Tk i
p=K4ELwUE+K5ELw,,3&—4- (2:88)

where

K, and K. are constants whose approximate

values are given in table 2~15.
E} is taken for the species of the face ply.
The maximum bending moment at the center

of the panel can be calculated from the following
approximate formula provided the length of the
panel exceeds its width by a moderate amount.

3
Meax. =N Ew, E%“é (long narrow panels only)
(2:89)
where
M =constant from figure 246 (c).

Although the edge support conditions are
taken as simply supported, it is assumed that the
panel length and width remain unchanged after
the panel has been deflected. Therefore, in
addition to the bending stress, there will be a
direct temsile or membrane stress set up in the
plane of the plywood, and the total stress in any
ply will be the algebraic sum of the bending stress
and direct stress in that ply. The maximum
total stress will occur in the extreme fiber of the

-o8

outermost ply having its grain direction perpen-
dicular to the plane of the section upon which the
moment was taken; the bending stress being
calculated from formula (2:67) and the direct
stress from section 2.601 after first determining
the average direct stress across the section from
the formula:

2
Ffravy=2.55E, (%—") (long narrow panels only)
(2:90)

() Uniform load—all edges clamped.

The load-deflection relation, formula (2:88), will
also apply to this case provided K; and K, from
table 2-15 are substituted for X, and K, respec-
tively. The maximum total stress may also be
determined as outlined in (a) above, provided
A; from figure 2-46 (¢) is substituted for A; in
formula (2:89).

Table 2-15. Talues of constants in the approximate deflection
Jormulas for plywood panels under normal loads !

Uniferm load all Tniform laad all

edges simply
Panel construction 2 ‘ supported | edges clamped

i : i
/ey K, 1 K (b,’aﬁl e | K»

3 ply, 9=0° Lo (see (see © 1.0 (see {see

[6=90°)9=50°) 9=90°); #=90°}

1.5 L7 54 20 3.6 6.0

2.0 B 4TI>B60 25 T

>3.0 S R W U A

#=90° ! >10| 65| 3133 10 33| o

5 ply, §=0° 1,0} {see (see 1.0 (see (see

=007 6:=00°) i#=00°)|g=90°)

1.5, 24 6.5 2.0 8.3 8.2

>200 L5] 60]|>30. T.o o.4

§=50° 1.9 6.2 123 10 287 1.7
[ >15! 50 10,0 >20

ol 265 155
!

1 The values given in this table are for sproce plywood, all plies of equal
thickness, but they may also be considered appiieable to plywood of other
species and of the same constructions. For plywood izade of more than
five plies or of unequal ply thickness, the above tabje may be used as a rough
guide in arbitrarily selecting values of these constants.

2 is the angle between the face grain direction and side b of the panel,

2.77. StirFeNED FLAT PLYWOOD PANELS.

2.771. The stiffness of a stiffener afized to a
plywood panel (ref. 2.71). When a stiffener is
affixed to a panel the neutral surface of the
panel moves toward the stiffener as illustrated in
figure 2-47. The amount of this movement
is given by the equation:

1 i4+d
200t ERE, E
cthEad T T ES

Z,=

(2:91)




o

- 7 -

r— (- 7 - r -0

I

in which
a=VP+P—1

) ¢=§ \lEWEZ(G_m.—

e¢=1if the edge of length b is simply, sup-
ported

2pe

c==2 if the edge of length & is clamped
E;=modulus of elasticity of the stiffener in
the direction of its length

The stiffness in the neighborhood of the stiffener
added to the plate by the presence of the stiffener
1s approximately:

th

(ED),= [d“’—t—S(t-{-d 2Z ) +th B, 2,0 (2:92)

p [

e e et e e —— ity — —

i

2.772. A single stiffener bisecting a panel. If
the stiffener is sufficiently stiff it will substantially
divide the panel into two identical panels that
can be designed according to the methods of
sections 2.71 and 2.72. The minmimum stifiness
of the stiffener that will accomplish this purpose
is defined in the following sections,

2.7721. Stiffened panel subjected to edgewise
compression, stiffener perpendicular to the direction
of the stress and parallel to side ¢ (8=0° or 90°)
(ref. 2-30).

_t_' (Fcrm__Fcrp) (293)

(Elser=177

in which (EI),. is the critical value of (EI), as
determined by equation (2:92); F.., and F,,, are
the critical buckling stresses of the panel, con-
sidered to be unstiffened and adequately stiffened

1h /mfurﬁAL SURFACE

L

Figure 2—47. Nomenclature for equations (2:91) and (2:92).
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respectively, obtained by means of the method of
section 2.712, Case 1.

2.7722. Stiffened panel subjected to edgewise com-
pression, stiffener perpendicular to the direction of
the stress (8=45°). The stiffness in the neighbor-
hood of the stiffener added to the plate by the
stiffener is assumed to be the stifiness of the stiff-
ener alone
1
12

(BEDy=-— Ek &8 (2:94)

and the critical stiffness of the stiffener is approx-
imately

El, =12 2:95
( )ur_40b (G'crm_.a'.crp) (-‘ ;Z)}

i which

a=the dimension of the panel perpendicular
to the direction of the stress

b=the dimension of the panel parallel to the
direction of the stress

and in which the values of ¢, and ¢, are ob-
tained from the critical buckling stresses of the
panel, considered to be unstiffened and adequately
stiffened respectively, by means of figure 2-48 and
the method of section 2.715 for panels with edges
simply supported and having their face grain at
45° to their edges.

2.7723. Stiffened panel subjected to edgewise com~
pression, stiffener parallel to the direction of the
stress and to side b (8=0° or 90°).

tab® 2dh E,
TP (14 )~ o
(2:96)

(EI)sar=

in which (E[,, is the critical value of (E7), as
determined by equation (2:92); F,,, and F,., are
the critical buckling stresses of the panel, con-
sidered to be unstiffened and adequately stiffened
respectively, obtained by the means of the method
of section 2.712, Case I, and n is the number of
half-waves that occur in the unstiffened panel. It
may be noted that the dimensions of the stiffener,
d and h, appear in equation (2:96) as well as In
equations {2:91) and (2:92) and, therefore, it is
necessary to estimate the values of these dimen-
sions and verify the estimate by use of equation
(2:96).

The compressive stress in the stiffener asso-
ciated with the critical stress of the panel is:

Es 7 .
f.:cr:'E‘Tb Fcrm (297)

The load carried by the panel and the stiffener
at the critical stress of the panel is:
E;
Py=Fn | at+2: dh] (2:98)
b

The ultimate load of the stiffened panel cannot
be greater than the sum of the ultimate loads of
the two half panels according to section 2.722
plus the ultimate load of the stiffener considered
as a short column. The reduction of this sum in
terms of the ¢/a, of one of the half panels is given
by figure 2—49 (ref. 2-30).

2.7724. Stiffened panel subjected to edgewise
compression, stiffener parallel to the direction of
the stress (8=45°). The stiffness in the neighbor-
hood of the stiffener added to the panel by the
stiffener is assumed to be the stiffness of the stif-

fener alone and 1s given by formula (2:94). The
critical stiffness of the stiffener is:
(EI)MF% b (Fon—F.)  (2:00)

in which (El).. is the critical value of (EI), as
determined by equation (2:94); F.., and F,,, are
the critical buckling stresses of the panel, consid-
ered to be adequately stiffened and unstiffened.
respectively, obtained by means of the method of
section 2.715; and a and & are the dimensions of
the panel perpendicular and parallel to the diree-
tion of the stress, respectively (ref. 2-70).
2.7725. Stiffened panel subjected to edgewise

shear. Stiffener parallel to edges (or ends) of panel
and B==0° or 80°,
o EReL )
(EI)sc.r~8 Kl(Li (2100)
in which

(ET),.,~the critical value of (EI), as deter-
mined by equation (2:92)

L =length of stiffener

a =width of panel (independent of the
direction of the stiffener)

Fig is determined by means of figure 2—-46

The critical stress of the stiffened panel is com-
puted by means of section 2.713 equation (2:77)
applied to one half of the panel as divided by the
stiffener, provided that (7T}, is equal to or greater
than (E@).,.

2.773. A plywood panel stiffened with a multi-
plicity of closely spaced stiffeners parallel to one of
its edges {8=0° or 90°). Iif the spacing of the
stiffeners is not too great the formulas for plywood
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of section 2.71 can be applied to such panels. It
1s convenient to employ formulas for the load per

inch of length of the edge of the stiffened panel

rather than formulas for stress, thus
Pccr=Fccr i,

where ¢, is the effective thickness of the stiffened
panel, which it will not be necessary to compute.
The following nomenclature is convenient.

D_ Eff  E.f forstiffeners ;éqralllel

»=Ton Ton or perpendicular

7 4 to the direction of

the face grain of

3 3 =

D,= }‘%’t v Bt the panel, respec-

128, 7 12X, tively. .
Griat®
DSt

Dypey Dy, and Dy, are computed similarly to the
above except that the stiffener is considered as an
extra ply of the plywood. The location of the
neutral axis 1s taken mto account as described in
section 2.52,

Dy, Dy, and Dy, are effective values that apply
to the stiffened panel.

The subscripts w and z applied to D denote
directions parallel and perpendicular, respectively,
to the direction of the stiffeners, and subscripts 1

- and 2 denote directions parallel and perpendicular,

respectively, to the direction of the stress for

panels subjected to compression and to the direc-

tion of side b for panels subjected to shear,
Equations (2:72) and (2:77) become

Pccrzlec\ D.ineDze'a% (2~101)
Po..=12H. [D\}Du}* % (2:102)
in which
k_____-Dwe #‘fme+2Dwze
v Dy, D;
b /DAY
T a D2,>

2.7731. Determination of D, .. The stiffeners
being closely spaced, the usual engineering formula
that takes into account the location of the neutral

axis, can be employed.

nhd 3@+d)?
Dm:Dw_l_l_QE K, [d2+ﬂth,+ 1] (2:103)
gEgt

in which
g= the width of the panel across the stiffen-
ers and is equal to e or & as required
n= the number of stiffeners
E;=modulus of elasticity of the stiffeners in
the direction of their length.

2.7732. Determination of D,.. When a panel is
bent across the stiffeners, the variation of the stiff-
ness at the stiffeners and between the stiffeners,
and the presence of a sharp kink at the edges of the
stiffeners due to stress concentrations, are taken

into account.
D2 h D,
ch2:|—g [1_ D-"—‘C+1:I

r=u-(=3) -

(2:104)
in which
s=distance center to center of two adjacent
stiffeners.

2.7733. Determination of D;..

sze= {[g—ﬂh] Dzt [h_ f(t+d)]ch}

(2:105)

oy i

in which g is the width of the panel across the
stiffeners, n is the number of stiffeners, and ¢ is
determined from figure; 2-50 and 2-51.

2.7734. Determination of prrpe.

_ ‘\/.Ufwz nu_ferweD:e
K frwe=— T
we

(2:106)

in which the values of u,- and ., are taken from
equations (2:32) and (2:33) of section 2.52, as-
suming that the stiffener is an added ply of the
plywood.

2.774. Stiffened plywood panels subjected to bend-
g in the direction of the stiffeners. The maximum

- bending stress in stiffened plywood panels can

be calculated from the following formula, when
the face grain direction is 0° or 90° to the direc-
tion of the span:

MELC’
Dy,

Jo= (2:107)

where:
¢’ =distance from the neutral axis of the com-
posite section to the extreme longitudinal
fiber
E; i1s taken for the species of the outermost
longitudinal fiber.
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This maximum bending stress should not exceed
the modulus of rupture of the material in which
the maximum stress exists. If the stiffener is of
an I or box section, the modulus of rupture must
be corrected by a form factor as follows: When the
load is applied so that the outer flange of the
stiffener will fail in compression, the proper form
factor to use is that for a beam having the same
flange dimensions as the outer flange of the stiffener,
and the same web thickness as the stiffener, but
of a depth equal to 2z. If the load is applied
so that the panel will fail in compression, the
proper form factor to use is that of a beam having
flange dimensions equal to that of the effective
sheet plus the flange of the stiffener adjacent 'to
the panel, and a web thickness equal to that of
the stiffener but a depth of 2(d+t—z). In either
case no form factor need be used if the neutral
axis lies within the compression flange, where z

is the distance from the neutral axis to the stiffener

face away from the panel as shown in figure 2-52.
The effective width of the panel for stresses
below the proportional limit is:

_dRE(t+d—2Z,)
Ge= SUEZ

(2:108)

in which Z, is obtained from equation (2:91) and
b 1s in the direction of the stiffeners.
If the spacing of the stiffener (s in fig. 2-52) is

less than a,, the value of D), is obtained from -

equation (2:103) and

Z,=L _ttd (2:109)
2 ts Eb+1
dh E,
If this is not the case, then
D,.=D, +1 hd 5 BB, E,(t-+d—2Z.)?

(2:110)

in which Z, is obtained from equation (2:91), a.
from equation (2:108), and b is in the direction of
the stiffeners.

For stiffened panels having the face grain direc-
tion 45° to the length of the stiffeners, the plywood
is neglected in the computations and the stiffeners
designed to carry the total load.

2.775. Modes of failure in stiffened panels.
Modes of failure other than failure of the panel or
the stiffeners are not considered here.

A possible mode of failure, which has been in-
vestigated for only one particular type of con-

struction, is the premature separation of the ply-
wood panel from its stiffeners occurring when the
forces required to restrain the edges of the buckled
panels become too great for the strength of the
plywood or its attachment to the stiffeners.

Since no criteria suitable for general application
are available for predicting the critical modes of
failure, it is recommended that typical panels of
each particular type of construction be tested.

2.8. Curved Plywood Panels

2.81. STRENGTH 1¥ COMPRESSION OR SHEAR; OR
ComeINED  ComprEssioN (or TexsrioN) anNp
Suear. When failure by buckling does not oceur,
the ultimate strength of curved plywood panels
subjected to compression or shear, or combined
compression (or tension) and shear may be ob-
tained by the method given in section 2.613.
This method is applicable when the face grain
direction is at any angle.

2.82. Circurar THiN-WaLLep Prywoop Cryi-

" INDERS.

2.821. Axial compression.

2.8211. Compression with face grain parallel or
perpendicular to the axis of the cylinder. The
theoretical buckling stress for a long cylinder (to
be modified for design as described later in the
section) is given by the formula:

Fccr=Ku{Efw+Efz] (2'111)

~3 | o=

where
E is for the species of the face plies
t=thickness of plywood
r=radius of cylinder
K, is a buckling constant that is a function of

_E'Tf}_Ez and is determined from figure
2-53. In using figure 2-53, E| is the
flexural stiffness of the plywood in the
direction parallel to the longitudinal axis
of the cylinder. E) is equal to E,, when
the face grain is longitudinal and is equal
to E,;, when the face grain is circum-
ferential. E, is the flexural stifiness of
the plywood in the circumferential direc-
tion. E,+ZE:is equal to E,+E);.

Because of the steepness of the curve for X, at
the extreme right and left portions, it appears
advisable to avoid, when possible, the use of types

of plvwood for which the ratio m is small or

nearly equal to unity.
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For use in design, the theoretical buckling stress
must be modified as the proportional-limit stress
is approached. This is accomplished by the use
of figure 2-54. The proportional-limit stress used
with this chart is the compressive proportional
limit for the plywood in the direction of the cylin-
der axis and is determined from table 2—13 or from
section 2.600. F,,=F,, when the face grain is
longitudinal. F,,=F,,, when the face grain is
circumferential.
abscissa with the ratio F.. (theoretical)/F.,. The
design buckling stress, F,.,, is then obtained by
multiplying the ordinate by F,,.

Limited amounts of double curvature have
negligible effect on buckling loads.

2.8212. Compression with 45° face grain. When
the face grain is at an angle of 45° to the cylinder

-axis, the theoretical buckling stress may be taken

as the average of the theoretical buckling stresses
obtained by assuming the face grain direction to
be: (1) parallel to the cylinder axis, (2) ecircum-
ferential. In using figure 2—54, however, to obtain
the design buckling stress, the proportional-limit
value F,, should be that for the plvwood at 45° to
the face grain. F,,,;, may be taken as 0.55 Fiu;,
where F.; is determined by section 2.610.

2.8213. Compression—effect of length. If the
cylinders are not long, an adjusted value by XA,
designated by K,.. should be used in formula
(2:111)., Values of K,, can be determined from
figure 2-55 in which L is the length of the eylinder,
and the subscripts 1 and 2 apply to the axial and
circumferential directions respectively.

2.822. Bending. For bending, the design buck-
ling stress determined as for compression may be
increased 10 percent.

2.823. Torsion. The buckling stresses of thin
plywood cylinders can be computed by the formula

Frm Ko (Epe-t Ep) ; (2:112)

in which the value of K. depends upon values of

E,
W, U, my and 6
1 Grt Goe
V=3 E.+E,.
. LA
U=~

g=angle between face grain and generator
of cylinder (fig. 2-58)

The chart is entered along the .

Values of K, for different values of W, U, and
g are given in figures 2-57, 2-58, and 2-59. The

nomenclature is illustrated in figure 2-36. (Ref.
2-03)
2.824. Combined torsion and bendin.g Cases

of combined loading can be -checked by the fol-
lowing interaction formula:

(Fstcr> (Fbcr> - 0
where:

fse=applied torsional shear stress
fr=applied bending stress
Fy-=pure torsion design buckling stress
Fye,=pure bending design buckling stress

2.83. CurveEp PanELs.

2.831. Axial compression. The buckling stress
is that of a complete eylinder, of which the curved
panel can be considered to be a part, of a length
equal to the axial dimension of the panel. It can
be obtained by use of formula (2:111) corrected
for length by the method of section 2.8213.

It the curved panel is very accurately made,
higher values may be obtained by test but cannot
be counted upon in design.

2.832. Shear. An approximation of the buck-
ling stress 1s obtained by adding the buckling stress
of the panel considered to be flat to that of the
cylinder of which the panel can be considered to
be a part. Thus the buckling stress is given ap-
proximately by (ref. 2-40)

(E3E,)Y*
FSCT H.‘I 5RJ’

(2:113)

(%)24—}{,( Bt Eny

{2:114)
or

Fscr [Efw+Efz [K +K :| (7 110)

in which formula (2:114) comes from (2:77) and
(2:112); formula (2:115) comes from (2:80) and
(2:112).

2.84. LongITupixaLLy STIFFENED CYLINDERS.
A multiplicity of evenly spaced idéntical stiffeners
attached to the inner surface of the cylinders.

2.841. Stresses when buckling does not occur.
The strengths can be computed by use of sections
2.610 to 2.614.

2.8411. Azial compression (or tension). The
compressive stress in the plywood is:

. PE,
f°_nth,,—{—2th,,

(2:116)
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Figure 2-55. Curve showing length effect of cylinders subjected to axial compression.

and that in the stiffeners is

f=__ PE
T nhdE,F2nriE,

in which P is the total load on the stiffened
cvlinder, K, and E, apply to the plywood and the
stiffeners, respectively, in the direction of the axis
of the cylinder, r is the mean radius of the plywood
cylinder, n is the number of the stiffeners, 2 and

(2:117)

d are the cross-sectional dimensions of an indi-
vidual stiffener, and ¢ is the thickness of the

plywood.

2.8412. Shear stress due to torsion. The shear
stress in the plywood is:
2GwTr
= - 2 (2:118)
nh &, T + 7 Gap(rgt—7r,9)
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and that in the stiffener is:

2@ Tr
" :
nhG, = ! +7|'Gab(7"34_?'24)

To 1

Jo=

(2:119)

in which 7, is the radius of a cylinder tangent to
the inner surfaces of the stiffeners, r, and r, are
the inner and outer radii of the cylinder, respec-
tively, Gy and G, are the moduli of rigidity of the
ply¥wood and the stiffeners, respectively, with
reference to longitudinal and circumferential axes,
and I is the applied torque.

DIRECTION OF
FACE GRAIN

--—...._.——

2

Figure 2-66. Illustration of the meaning af the symbols
used for cylinders subjected to torsion.

2.842. Buckling of stiffened eylinders.

2.8421. Axial compression. In general the ply-
wood will buckle between the stiffeners when the
stress in it equals the buckling stress for the

112

eylinder, the effect of the stiffeners being ignored,
and, therefore, formula (2:111) emploved. The
load at which such buckling occurs can be found
by setting this stress (F., from formula 2:111)
equal to f; in formula (2:116) and solving for the
load P.

Tests indicate that unless the stiffeners are
quite stiff they will buckle with the cvlinder and
fail at the load computed in the above manner.
If the stiffeners are so stiff that thev do not
buckle with the cylinder, the maximum load wil)
be greater than that computed. However, no
methods are available for the determination of
the size stiffeners required to obtain this effect
nor to compute the maximum Joads that are
obtained. (Ref. 2-95)

2.8422. Torsion. The shear buckling stress of
the curved plywood shell between the stiffeners is
about 85 percent of that obtained by formula
(2:112) for the cvhinder, neglecting the effect of
the stiffeners. The torque at which buckling
occurs can be found by setting this stress .85
F,.. from {(2:112) equal to 7, in formula (2:118)
and solving for the torque 7.

Tests indicate that the maximum torque coin-
cides with the torque at which buckles form.

2.8423. Bending. For bending, the design buck-
ling stress determined as for compression may be
increased 10 percent. Tests indicate that for
very stiff stiffeners this percentage mav be
increased, (Ref. 2-96)

2.85. STIFFENED CURVED PANELS.
stiffener bisecting the panel.

2.851. Axial compression.

2.8511. Stiffener azial. The critical stress in
the plywood is computed according to the method
of section 2.831, and the critical load of the
stiffened panel can be obtained by substituting
this value for f. in equation (2:116), placing =
equal to unity, and solving for P.

2.8512. Stiffener circumferential, The eritical
stress is computed according to the method of
section 2.831, using the distance between the
stiffener and the end of the panel as the length of
the cylinder, provided that

A single

(ED,>0.4F,.rh? (2:120)
in which (EI), is given by formula (2:84), and
Fer is the critical stress of the entire panel,
neglecting the stiffener, computed by the method
of section 2.831.
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2.852. Shear.

2.8521. Stiffener azial. The stiffened curved
panel can be considered to be a part of a stiffened
eylinder. Thus the eritical stress of the plywood
panel without the stiffener is computed according
to section 2.832. This stress is substituted for
the left hand member of equation (2:118) using:

27r

="

a (2:121)

and the equation solved for the torque 7. The
stress applied to the edges of the stiffened panel
which will cause it to buckle is then given by:

T
f.?cr = S arit

(2:122)
This method leads to values which are slightly
conservative.

9.9. Joints

2.90. BoLTED JOINTS.

2.900. Bearing parallel or perpendicular to grain.
The strength of wood in bearing parallel to the
grain against solid steel aircraft bolts disposed
along the member in single or double lines with
the load divided equally between the two ends
of the bolt (concentric loading) can be determined
by use of figure 2—60. The stress at ultimate and

at the proportional limit is expressed in terms of

the maximum crushing strength for L/D ratios
up to 16. The stress does not vary significantly
below an L/ of 8 for softwoods and 5 for hard-
woods but drops rapidly as the L/D ratio is in-
creased above these values.

The ratio of ultimate bearing stress to the
bearing stress at the proportional limit is 1.4 or
less (fig. 2-61) at low L/D ratio for both softwoods
and hardwoods. Thus, if a ratio of ultimate to
limit bearing load higher than 1.4 is desired, it
follows that the limit load in the low L/D range
must be based on stresses below the proportional
limit. For example, if a ratio of 1.5 is desired for
softwoods {shown by broken lines in figs. 2—60
and 2-61) the limit load will be less than the pro-
portional limit load up to an L/D ratio of 8.5
beyond which the proportional limit stress is used
to determine the limit load.

The bearing strength of wood perpendicular to
grain under aircraft bolts can be found by use of
figure 2-62 (ref. 2-77). It may be noted that
while bearing stress is only moderately reduced as
the L/D ratio becomes greater than 9, there is a
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marked variation with bolt diameter, particularly
in the smaller sizes. The bearing stress at pro-
portional limit when bearing perpendicular to
grain, in general mav be found with sufficient
accuracy by dividing the ultimate bearing strength

by 1.33 for all L/D ratios.

2.901. Bearing at an angle to the grain (ref. 2—61).
When the load on a bolt is applied at an angle
between 0° and 90° to the grain, the allowable
load (proportional limit or ultimate) may be
computed from the expression

Po

~ P s+ ( cos’é

(2:123)

where

N=the allowable bolt load at angle ¢

P=the allowable bolt load parallel to the
grain

()=the allowable bolt load perpendicular to
the grain

f=the angle between the applied load and
the direction of the grain

Equation (2:123) is solved graphically by the
Scholten Nomograph, figure 2—63.

2.902. Eccentric loading. When load is applied
at only one end of a bolt (eccentric loading), the
allowable ultimate load may be taken as one-
half the ultimate two-end load computed as
above. At proportional limit, however, the al-
lowable eccentric load may be taken as onlvy one-
fourth of the two-end proportional limit load for
two-end loading parallel to grain. This ratio
may be increased to one-half if deformations ap-
proximately equal to those occurring at propor-
tional limit under two-end loading are not objec-
tionable even though they are well bevond those
corresponding to the one-end proportional limit
load.

Proportional limit values for one-end loading
perpendicular to grain may be taken as one-half
of the proportional limit values for two-end loading.

2.903. Combined concentric and eceentric loadings;
bolt groups. When the design loads on a group of
bolts are either all concentric or all eccentric and
are all in the same direction, the allowable loads
for the individual bolts may be added directly to
determine the total allowable load for the group.
When the design loads are in different directions
(as when the Joad causes a moment about the cen-
troid of the bolt group) or when they are partly
concentric and partly eccentric, each bolt must be
treated separately. The design loads and moments
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must be distributed to each bolt in proportion to
its resistance and the geometry of the bolt group.
This often requires a trial and error calculation.

2 904. Bolt spacings. Thefollowingboltspacing
criteria are based on spruce. For other species the

parallel-to-grain spacings and end margins should

be multiplied by the expression:

Fo,
=t 2:12
E=3%7F, (2:124)

where
F,,=allowable stress at proportional limit in
compression parallel to the grain
F,,=allowable shea.ring stress parallel to the
grain of the material
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Spacings perpendicular to grain and edge mar-
gins as given below are applicable to all species.

2.9040. Spacing of bolts loaded parallel to the
grain. ‘

(1) Spacing parallel to the grain. The mini-
mum distance from the center of any bolt
to the edge of the next bolt in a spruce
member having cross-banded reinforcing
plates, subjected to either tension or com-
pression, is given in figure 2-64. The
minimum distance from the edge of a bolt
to the end of such a member subject to
tension is also given. For spruce mem-
bers without reinforcement these values
must be increased by 50 percent.
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The minimum distance from the edge of a
bolt to the end of a member subject to
compression should be 3% bolt diameters.

(2) Spacing perpendicular to the grain. The
minimum distance between the edges of
adjacent bolts or between the edge of the
member and the edge of the nearest bolt
should be one bolt diameter for all species.
It is recommended that the stress in the
area remaining to resist tension at the
critical section through a bolt hole not
exceed two-thirds the modulus of rupture
in static bending when cross-banded re-
inforcing plates are used; otherwise one-
half the modulus of rupture shall not be
exceeded.

(8) When a bolt load is less than the allow-
able lcad parallel to the grain, the
spacing may be reduced in the following

way: The bolt spacing given in figure

2-64 can be multiplied by the ratio of
actual load to allowable load except that
the spacing should be not less than three
bolt diameters. The bolt spacing per-
pendicular to the grain cannot be reduced
below one bolt diameter.

2.9041. Spacing of bolts loaded perpendicular to

the grain.

(1) Spacing perpendicular to the grain. The
minimum distance from the edge of
a bolt to the edge of the member
toward which the bolt pressure is acting
should be 3% bolt diameters. The mar-
gin on the opposite edge and the distance
between the edges of adjacent bolts
should be not less than one bolt diameter.

(2) Spacing parallel to-the grain. The mini-
mum distance between edges of adjacent
bolts should be three bolt diameters
and the distance between the end of
the member and the edge of the nearest
bolt should be not less than four bolt
diameters.

(3) When a bolt load 1s less than the allow-
able load perpendicular to the grain,
all bolt spacings may be multiplied by
the ratio of actual load to allowable load
except that the spacing should be not less
than one bolt diameter. The distance
between the end of the member and the
edge of the nearest bolt, measured parallel
to the grain, should be not less than three
bolt diameters, however.
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2.9042. Spacing of bolis loaded at an argle to the
grain. \When bolts are loaded at some angle to the
grain, the load can be resolved into components
parallel and perpendicular to the grain and the
spacings thereafter determined in accordance with
sections 2.9040 and 2.9041.

2.9043. General notes on bolt spacing.  When
bushings are used in combination with bolts, the
spacing should be based upon the outside diameter
of the bushing. WWhen adjacent bolts or bushings
are of different diameters, the spacing should be

" based upon the larger.

When staggered rows of bolts are emploved in
design, the distance between the center lines of
adjacent bolt rows should be not less than the sum
of the diameters of the largest bolt in each row.

2.905. Bearing in wood-base materials.

2.9050. Bearing in plywood (rcf. 2—47). For
plywood constructed of a single species in accord-
ance with Specification AN-P-69a (Plywood and
Veneer: Aircraft Flat Panel) or any other approxi-
mately balance construction (nearly equal thick-
ness of material in both directions), the propor-
tional limit bearing strength under solid steel air-
craft bolts loaded at any angle to the face grain
can be determined from figure 2-65. The propor-
tional limit stress expressed in terms of the ultimate
compressive stress is related to diameter of bolt
for various thicknesses of plywood. Ultimate
loads can be assumed to be at least 50 percent
above these values.

For appreciably unbalanced constructions or for
balanced constructions in which the use of two
species results in an appreciable difference between
Feow and F,., the proportional limit bearing
stresses under aircraft bolts may be found by
multiplying the appropriate ratio from figure 2-65
by Fu. for bolts loaded at 0° to the face grain and
by F... for bolts loaded at 90° to the face grain.
For loadings at other angles, the proportional limit
stresses may be found by straight-line interpola-
tion between values found by the procedures given
above for loadings at 0° and 90°.

The minimum distance from the edge of a bolt
to the edge of & member in a single-bolt connection
loaded parallel to the face grain is one diameter for
either tensile or compressive loading. When the
face grain is at 45° or 90° to the direction of load-
ing, the edge distance must not be less than one and
one-half diameters. Where several bolts disposed
along the center line are employed in a connection,
the edge distance should be determined by multi-
plying the single-bolt edge distance given above by
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the number of bolts. Where bolts are disposed in
two lines, each line should coiricide with the center
line of the half-width of the member in which the
line of bolts is placed, and the edge distance for
each line should be equal to the number of bolts
in that line multiplied by the edge distance for a
single bolt.

The minimum distance from the edge of the bolt
to the end of the member is two diameters under
tensile loading for any grain orientation. For
compressive loading a minimum of one diameter
should be used.

The most common use in which plywood will
have to sustain boltbearing loads will be as rein-
forcing plates on solid wood members (sec. 2.906).

2.9051. Bearing in compreg (rvef. 2-31). For
cross-banded compreg of approximately balanced
construction that conforms to AAF Specification
15065-B (Panels: Compressed Wood, Impregnated),
the bearing strength under solid-steel aircraft bolts
loaded at any angle to the grain can be determined
from fizure 2-66. The stress at proportional limit
and at ultimate, expressed in terms of the ultimate
compressive stress, is related to bolt diameter for
several thicknesses of compreg. = Ultimate loads
are at least 50 percent above the proportional limit
value. :

No variation in bearing strength with direction
of loading has been noted for unbalanced con-
structions tested. It is suggested, however, that
when the unbalance exceeds a 60—40 relationship,
the bearing stresses may be found by multiplying
the appropriate ratio from figure 2-66 by F,,, for
bolts loaded at 0° to the face grain and by F,.
for bolts loaded at 90° to the face grain. For
loadings at other angles, the bearing stresses may
be found by straight-line interpolation between
values found by the procedures outlined above for
loadings at 0° and 90°.

For a single-bolt joint under compressive load-
ing, the minimum distance from the edge of the
bolt to the edge of the member is one and one-half
diameters for any grain orientation. The distance
from the edge of the bolt to the end of the member
should be at least one bolt diameter.

For a single-bolt joint loaded in tension, the
minimum end or edge distances are the same and
vary with the face grain orientation as follows:
parallel and perpendicular to face grain, 4% di-
ameters; 45° to face gramn, 2} diameters.

For connections employing more than one bolt,
edge distances should be determined as indicated
for plywood in section 2.9050.

At a ratio of bearing length to bolt diameter of
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4, the bearing strength of compreg exceeds the
double shear strength of the bolt.

The most common use in which compreg will
have to sustain bearing loads will be as reinforcing
plates on solid wood members.

2.906. Bearing in reinforced members (ref. 2-68).

2.9060. Wood members wnth plywood reinforcing
plates. The allowable limit bearing load parallel
to the grain of members symmetrically reinforced
with plywood (AN-P-69a}, the thickness of which
(two plates) is 10 to 30 percent of the total thick-
ness of the member and reinforcement, under
solid steel aircraft bolts may be determined as
follows: -

(1) Select tentative thickness of reinforce-
ment and diameter of bolt.

(2) Compute the L/D ratio based on the total
length of the bolt in bearing.

(3) From figure 2-60 read the ordinate on the
proportional limit curve for the wood
member corresponding to the L/D ratio
found in (2).

(4) From figure 2-65 read the ordinate on
the proportional limit curve for the
thickness of reinforcement (one plate)
and at the bolt diameter chosen.

(5) Multiply the factors determined in steps
(3) and (4) by the appropriate maximum
crushing strengths to obtain the allow-
able proportional limit bearing stresses
of the materials involved.

(6) Multiply the stresses so obtained by the
corresponding bearing areas to obtain
the bearing load for each material. The
summation of these bearing loads closely
approximates the proportional limit bear-

ing strength of the reinforced member,

being only slightly conservative.

1f the ratio of the ultimate stress to the propor-
tional limit stress indicated by the curve of figure
2-61 for the construction chosen is less than the
ratio of ultimate load to limit load (usually 1.5)
specified by the design requirements, it is obvious
that the limit bearing load chosen for use in design
must be less than the load corresponding to pro-
portional limit stress computed by the steps out-
lined above, and will be equal to the computed
load multiplied by the ratio of the ordinate from
the curve of figure 2-61 to the desired ratio. If
on the other hand, the ratio from figure 2-61 is
greater than that specified, the design ultimate
bearing load must be less than the actual ultimate

939770°—51——10

load if the limit bearing load is to be no greater
than the bearing load at proportional limit.

The preceding method applies to plywood re-
inforcing plates regardless of the angle between
the load and the face grain direction.

The allowable concentric bearing load perpen-
dicular to the grain can be obtained in a similar
manner except that in step (3) figure 2--62 shall
be used.

When the load on a bolt is applied at an anele
between 0° and 90° to the grain, the allowable
load on the wood member may be computed by
suhstituting in equation (2:123) the parallel and
perpendicular bearing loads determined by the
methods outlined in the preceding paragraphs.
For loads on the reinforcing plates refer to sec-
tion 2.9050.

2.9061. Wood members with cross-banded econi
preg reinforcing plates. The allowable bearing
stress parallel to the grain of wood members
svmmetrically reinforced with cross-banded com-
preg, the thickness of which (two plates) is 10
to 30 percent of the total thickness of the member
and reinforcement, under solid steel aireraft bolts
may be determined as follows:

(1) Select tentative thickness of reinforce-
ment and diameter of bolt.

(2) Compute the ZL/D ratio based on the
total length of the bolt in bearing.

(3) From figure 2-60 read the ordinate on
the ultimate stress curve corresponding
to the L/D ratio found in {2}.

(4) From figure 2-66 read the ordinate on
the ultimate stress curve for the thickness
of reinforcement (one plate) and at the
bolt diameter chosen in (1).

(5) Multiply the factors determined n steps
(3) and (4) by the appropriate maximum
crushing strengths to obtain the allow-
able bearing stresses of the madterials
involved. i

(6) Multiply the stresses so obtained by the

corresponding bearing areas to obtain
the maximum bearing load for each

material. The summation of these bear-
ing loads 1s the maximum bearing
strength.

The ratio of the ultimate stress to the propor-
tional limit may be obtained from the curves in

- figure 2-61.
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When compreg reinforcing plates are applied to
members under tensile loading, the grain of the
compreg must be at 45° to the direction of loading.

The allowable concentric bearing load perpen-
dicular to the gramn can be obtained in a similar
manner except that in step (3) figure 2-62 shall
be used.

When the Joad on a bolt is applied at an angle
between 0° and 90° to the grain, the allowable
load on the wood member may be computed by
substituting in equation (2:1%3) the parallel and
perpendicular bearing loads determined by the
methods outlined in the preceding paragraphs.

" For loads on the reinforcing plates, refer to section

2.9051.

2.907. Bushings. Bushings of light allovs or
fiber materials may be used to increase the bearing
strength of bolts. Since the possible combina-
tions of materials for bolts and bushings are
numerous, a specific set of allowable loads for all
possible combinations cannot be given.

The allowable bearing loads for aluminum bush-
ings used in combination with steel bolts, and for
other combinations of materials, should be de-
termined by a special test.

2.908. Hollow belts. The use of hollow bolts
with comparatively thin walls for bearing in wood
ig not recommended, as tests at the Forest Prod-
ucts Laboratory show that such bolts are little
if any more efficient on a weight basis than solid
bolts. When used, the allowable stress parallel
to the grain may be obtained from N. A. C. A.
Technical Note 296 (ref. 2-77). In general, tests
should be made to determine the allowable loads
at other angles to the grain.

2.909. General features of bolted joints.

2.9000. Drilling of holes (vef. 2-27). In order
to use the bolt-bearing stresses shown in the pre-
ceding sections, holes must have accurate aline-
ment and spacing and the surfaces must be smooth
and true. This requires control of rate of feed
and rotational speed as well as selection of the
proper type of drill. Most successful results have
been obtained with a twist drill carefully centered
in the chuck, rotated at the highest speed com-
patible with a reasonable drill life, and fed at a
rate that will produce cutting, not tearing. In
general, the smoothest hole produces the most
desirable bolt-bearing characteristics.

2.9091. Repeated loading of bolted joints. The
proportional limit load may be repeatedly applied
without producing an appreciable increase in the
deformation or “slip” of the joint. In general,
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loads as high as 75 percent of the ultimate mavy be
safely repeated without excessive deformation.
Since this is close to the proportional limit for low
LiD ratios, 1t is seen that the amount the load
may be increascd above the proportional limit
increases with the L/D ratio. Since In a few
cascs in reinforced members the maximum safe
value is below 75 percent of ultimate, it is probably
best to consider the proportional limit to be the
optimum limit load.

2.91. GLvED JoINTs.

2.910. Allowable stress for glued joints (ref.
2-48).

(1) An allowable glue joint stress equal to
one-third F,, (column 14 of table 2-6)
for softwoods or one-half Fy, for hard-
woods for the weaker species in the
joint should be used for all plywood-to-
plywood or plywood-to-solid-wood joints
regardiess of face grsin direction and
for joints between solid wood members
i which the relative grain direction
is  essentiallv  perpendicular. The re-
duction for joints in whicl the face grain
direction of the plywood is parallel to the
grain of the solid wood is necessary
primarily because of the unequal stress
distribution commeon to most plywood
glue joints.

(2) The allowable shear stress on the glue
area for all joints between pieces of solid
wood having parallel-grain gluing, is
equal to the allowable shear stress paral-
le] to the grain for the weaker species in
the joint. This value is found in column
14 of table 2-6 and should be used only
when uniform stress distribution in the
glue joint is assured.

(3) The allowable shear stress on the glue
area for joints between pieces whose
erain directions make an angle of other
than 0° or 90° may be found by use of
formula (2:123) (sec. 2.901), using allow-
able values for 0° and 90° joints com-
puted as in (1) and (2) above. Figure
2-64 may be used for a graphical solu-
tion of formula (2:123). When the angle
between the grain directions of the ad-
jacent pieces does not exceed 15°, the
shearing strength allowed for parallel-
grain gluing as described in (2) above
may be assumed to apply without cor-
rection.
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2.911. Laminated and spliced spars and spar
flanges. Requirements for laminated and spliced
spars and spar flanges are presented in ANC-19,
Wood Aircraft Inspection and Fabrication (ref. 2—
24). Provisions for limiting the location of scarf
joints and for the required slope of grain are
included.

2.912. Glue stress between web and flange. The
stress on the glue area between web and flange
may be determined by dividing the maximum
shear per inch in plywood by the area of contact
per inch. For example, the shear stress on the
area of contact is

fg=-%”tmd1 : (2:125)

where

Jfe=shear stress on the area of contact
fs=the maximum shear stress in the plywood
t=thickness of one web

d=depth of the flange

g==shear per inch in the plywood

The allowable stress is determined according to
section 2.910. TIf, for example, the flange were of
spruce and the web of mahogany-yellow-poplar,
the allowable stress would be one-third the value
for spruce, or 330 pounds per square inch.

2.92. ProperTIES OF Mobpiriep Woop. It is
at times desirable to impart modified properties
to wood for reinforcement at joints, bearing plates,
and for other specific uses. Such modifications
can be obtained by treating with synthetic resins,
by compressing, or by a combination of treating
and compressing.

Investigations at the Forest Products Labo-
ratory have produced several types of modified-
wood combinations, such as “impreg,” “com-
preg,” “semicompreg,” and “staypak,” which are
described in ANC Bulletin 19 (ref. 2-24). When
the resin is set within the structure by the applica-
tion of heat prior to the application of assembly
pressures, thus greatly limiting the compression
of the wood, the material is called “impreg.”
When the treated wood is subjected to pressures
in the range of 1,000 to 3,000 pounds per square

inch prior to the setting of the resin, resulting in
& product with a specific gravity of 1.2 to 1.4, the
material is called “compreg.” Resin-treated wood
with specific gravity values between that of im-
preg and compreg is known as ‘‘semicompreg.”
Ordinary laminated wood or solid wood with no
resin within the intimate structure when com-
pressed under conditions that cause some flow of
lignin is known as ‘“staypak.” It differs from
material made according to conventional pressing
methods in that the tendency to recover its
original dimensions when exposed to swelling
conditions has been practically eliminated.

Some properties of parallel-laminated and cross-
laminated modified wood made by the Forest
Products Laboratory from 17 plies of Y-inch

rotary-cut yellow birch, sweetgum, and Sitka °

spruce veneer are presented in tables 2-16 through
2-21 (ref. 2-18), in which average values resulting
from the specified number of tests, together with
maximum and minimum values are given. Values
for normal laminated wood (controls), impreg,
semicompreg, compreg, and staypak are presented.
Conclusions drawn from these comparative tests
must be regarded only as indicative, because the
number of tests is limited.

2.920. Detarled test data for tables 2-16 to 2-21,
wnclusive. Specimens for test were obtained from
three sets of 24- by 24-inch panels of each of the
three species. Each set consisted of two seven-
teen-ply panels of each of the five materials, one
panel parallel-laminated and one cross-laminated.
Panels of a set were formed by assembling corre-
sponding plies of the panels from successive sheets
of veneer as it came from the lathe. So far as
possible, the veneer for each set was taken from
a different log or bolt.

Except as otherwise noted, tests were made on
spectmens with the original or formed surfaces of
the material undisturbed. In general, an equal
number of specimens was tested from each of the
two principal grain directions, lengthwise and
crosswise (0° and 90°), that is, parallel and per-
pendicular, respectively, to the grain of parallel-
laminated panels, and to the face grain of the
cross-laminated panels.
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Tension parallel to grain (test 1, tables 216 to
2-21, incl.). Speczmens were 1 inch wide by panel
thl{l\_ness ¢t by 24 inches long, shaped to have a
2lz-imch long central section ¥-inch wide. The
taper followed a 60-inch radius on each edge,

Tension perpendicular to grain and parallel to
laminations (test 2, tables 2-16 to 2-21, mcl.).
Specimens were 1 mch by ¢ by 16 mches long,
shaped to have a 24-inch long central section

-inch wide for tables 2-16, —17 and —18, and %-
mch wide for tables 2-19, —20, and —21, with
radii of 30 and 20 inches, respectlvelv

Compression parallel to grain (test 3, tdbles

2-16 to 2-21, incl) and perpendicular to grain
and parallel to laminations (test 4, tables 2-16
to 2-21, incl.). Specimens were 1 mch by ¢ by
3% to 4 inches long for the controls; impreg and
senlicompreg specimen lengths were appr oximately
4t. Compreg and staypak specimens were 1 inch
by ¢ by 2 to 4 inches long (approx. 6¢) for propor-
tioral limit and modulus data, and 1 by ¢ by 1 to
2 mches long {approx. 3¢) for maximum stress.

Compression perpendicular to laminations (test,
5, tables 2-16 to 2-21, incl.). Specimens were 1
bv 1 mch by panel thlcl\ness ¢, except for compreg
and staypak, which consmted of two thicknesses
of material, each 1 inch square, placed one upon
the other. Deformations were measured between
the fixed and movable heads of the testing machine.

Flexure (tests 6 and 7, tables 2-16 to 2-21, incl.).
Specimens 1 inch wide by height ¢ were tested as
simple beams with center loading on spans
ranging from 14¢ to 16¢

Shear parallel to grain and perpendicular to
laminations (test 8, tables 2-16 to 2-18, incl.).
Notched specimens were 2 inches by ¢ by 2% inches
(as illustrated in fig. 17 of ASTM specifications
for tests of small clear timber specimens, Desig-
nation D143-50) with shearing surface 2 inches
by t. Specimens tested in the Johnson-type shear
tool were 1 inch by ¢ by 3 inches (two 1-inch by ¢
shearing surfaces). Cylindrical double-shear speci-
mens, %-inch in diameter, were tested paralle] to
grain and parallel to lammatlons In a three-plate
jig by means of tenstle loading. -

Modulus of rigidity tests (test 9, tables 2-16,
=17, and -18; and test 8, tables 2~19, —20, and

140

—21) were conducted on panels appr oximately 24
mches square by full thickness of the material,
using the plate shear method developed by the
Foxest Products Laboratory for measuring the
shearing moduli of wood, as described in Forest
Products Laboratory report No. 1301 and AST)\
Designation D805—47. Torsion tests were con-
ducted on rectangular specimens of width 3t by
thickness ¢ by 16 to 24 inches long, gripped
flatwise and with a detrusion measuring device
applied to their edges. Following tests on these,
with torque kept within the proportional limit,
specimens were cut to a width of 2¢ and the
test repeated.

Toughness (test 10, tables 2-16, ~17, and -18;
and test 9, tables 2-19, -20, and —‘?1) specimens

% by t by 10 inches loncr with grain of parallel-
lammaLed material and face grain of cross-lami-
nated material parallel to length were tested over
an 8-inch span on the Forest Products Laboratory
toughness machine with plane of laminations
parallel to direction of load.

Impact (Izod type) specimens (test 11, tables
2-16, ~17, and —18) had the grain lencrth\\ ise and
the notch in an original surface, Some of the
staypak specimens were less than % inch thick. but
the dimension from the base of the noteh to the
opposite face was standard.

Water absorption (test 12, tables 2-16, —17, and
—18) specimens were 1 by % by 3 inches. The
grain was parallel to the I-inch dimension. One
surface of each specimen was an original face
sanded, and all of its other surfaces were machined.
Specimens were heated for 24 hours at 122° F_,
cooled, weighed, and immersed in water at room
temperature for 24 hours, and the percentage
increase in weight during immersion was calculated.

DlmenSlonal stablhty of thickness ¢ (test 13,
tables 2-16, —17, and -18) was determined by the
equilibrium swelling and recovery from compres-
sion of specimens % inch by ¢ by 2 inches long
(grain parallel to the Y%-inch dimension). Speci-
mens were immersed in water at room temperature
until equilibrium moisture content was reached,
and the percentage increase in thickness (swelhng
plus recovery) was calculated. The specimens
were then oven-dried, measured, and percentage
recovery and equlhbnum swelhng determined.
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CHAPTER 3
METHODS OF STRUCTURAL ANALYSIS

3.0. General

3.00. Prrrose. It is the purpose of the Méth-
ods of Structural Analysis portion of this bulletin
to present acceptiable procedures for use in de-
termining the internal stresses resulting from the
application of known external loads to wood and
plywood aircraft structures. The basic design
procedures that have been developed for use in
analyzing metal structures are generally applicable
to the problem of wood structures provided that
suitable modifications are made to account for the
differences in physical characteristics. The de-
signer’s attention is directed to existing text ma-
terial covering the treatment of common stress-
analysis problems not treated herein, and to the
current preparation of an Army-Navy-Civil Bul-
letin, ANC~4 “Methods of Structural Analysis.”

It is to be emphasized that the analysis pro-
cedures described in this bulletin are not presented
as required procedures but represent suggested
methods that are acceptable to the Army, Navy,
and Civil Aeronautics Administration. The na-
ture, magnitude, and distribution of the loads for
which the airplane structure shall be designed are
defined by the applicable specification, regulation,
handbook, or bulletin of the procuring or certificat-
mg agency.

Submission of a stress analysis, although such
an analysis employs a method of procedure which
1s considered acceptable by the procuring or cer-
tificating agency, does not necessarily constitute
satisfactory proof of adequate strength. The
stress analysis should be supplemented by per-
tinent test data. Unless a structure conforms
closelv to a previously constructed type, the
strength of which has been determined by test, a
stress analysis is not considered as a sufficiently
accurate and certain means of determining its
strength. Most desirable is a test of the complete
structure under the critical design-loads. How-
ever, tests of certain component parts and of
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specimens employing generally typieal construc-
tion and detail design features are of great assist-
ance both in justifying allowable stresses and in
proving analysis ‘methods. In each individual
case, the extent and nature of the structural test
program required to substantiate the stress ansal-
ysis 1s specified by the procuring or certificating
agency.

3.01. Sprc1AL CONSIDERATIONS IN STATIC TEST-
ING OF STRUCTURES. Since the allowable stress
values given in chapter 2, tables 2-6 and 2-7, are
based on a definite moisture content and method
of load application, consideration should be given
to these variables, both in using element tests to
establish design allowable stresses and in design-
Ing structures to be statically tested as complete
structures. Elements include simple structural
members and details, such as panels, stiffened
panels, or sections of spars. Complete structures
include wing panels, center sections, fuselage,
stabilizer, or other parts individually or in com-
bination. These two types of test will be discussed
separately since they are treated differently.

3.010. Element Tests. A comparison of the de-
sign values listed in tables 26 and 2-7 with the
results of standard tests at 12 percent moisture
content (ref. 2-57) shows that test results may be
made approximately comparsble to the design
values by the following methods. Enough tests
should be made to cover variability but the re-
quired number will be governed hy various factors
as discussed in the following.

Case A. When the type of element and the
mode of failure are such that the results of element,
tests can be directly related to the physical prop-
erties of coupons cut from the materials used in
the elements, the results of element tests may be
corrected by the ratio of the design wvalues in
tables 2-6 and 2-7 to the test coupon values.
Care should be taken that the elements and the
coupons are tested at a slow rate, at the same
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moisture content, and under approximasately the
same time-loading conditions. The test element
should be made of matched materials; for example
all stiffeners in a stiffened panel should be made
from the same stock.

Case B. When it is not practicable to correct

element tests by means of related tests on coupouns,
the following procedure may be employed:

(1) A sufficient number of tests should be
made to establish a reasonably reliable
average considering the wvariability of
the materials. Fewer tests will be re-
quired and the scatter of related tests
will be reduced if the test results are
corrected to the average specific gravity
values listed in tables 2-6 and 2-7 by
the methods of section 2.01. For the
same reason, it is desirable to use mate-
rial of approximately average specific
gravity in test specimens.

(2) The strength should be adjusted to 12
percent moisture by factors from table
2-2 appropriate to the primary mode of
failure. Should failure occur in glued or
bolted fastenings, however, no upward
adjustments should be made. It should
be recognized that moisture adjustments
are subject to error and should, there-
fore, be avoided whenever possible by
conditioning test specimens to approxi-
mately 12 percent moisture content.

(3) In element tests it will usually be possible
to arrange the test procedure so that
errors due to rate and duration of load
will be negligible in comparison with
other experimental errors, for example:

{a@) If the maximum load is supported for 15
seconds or more, such as i tests
where the load is added by weight in-
crements, corrections for rate and
duration of load are unnecessary.

(b) If the specimen is loaded at a rate of
strain such that the time from zero
load to failure is more than 2 minutes
when the testing machine is operated
continuously, corrections are unneces-
sary. Thus, if the first stopping point
is 25 percent of the expected ultimate
load and the machine takes % minute
to reach this load, the rate of strain is
sufficiently low.

The time to failure after passing the Hmit
load should be not more than 5

minutes if possible (slower loading
results i lower ultimate loads) sinece
upward corrections of test values,
because of long duration, are con-
sidered inadvisable.

(4) After correction of the average test
results for moisture, a correction {actor
to allow for variability should be applied
as follows:

(a) 0.94 when the failure is principally the
result of compression, tension, or
bending stresses, or shear in 45° ply-
wood.

(6} 0.80 when the failure is principally due
to shear stresses parallel to the grain,

3.011. Complete structures.

3.0110. Design allowances for fest condifions.
When a complete structure is static tested, it is
not usually possible to make the tesi under the
conditions on which the design values of tables
2-6 and 2-7 are based. Therefore, if the purpose
of the test is to prove the strength of the entire
structure at a specified ultimate load regardless of
test conditions (which is usually the case in order
to prove joints and fittings) it is recommended
that the designer investigate the effects of prob-
able test conditions prior to designing the struc-
ture on the basis of tables 2-6 and 2-7.

If it appears that the probable test conditions
will cause the strength in the test to be less than
that corresponding to design values in tables
2-6 and 2-7 suitable margins of safety should be
incorporated during the design.

3.0111. Test procedure. In complex composite
structures the effects of moisture content on over-
all strength are uncertain. Changes 1n wood
strength may be offset by stress concentration
effects. It is, therefore, desirable that complete
structures be conditioned as closely as possible
to 12 percent moisture content at the time of
testing.

To minimize effects of rate and duration of
load, the time to failure after passing limit load
should be less than 15 minutes if possible.

The ultimate load should be sustained without
failure for at least 15 seconds, in order to insure
the test bheinz comparable to design values in
regard to time effects.

The above procedure may be varied dependmg )
upon the purpose of the test. Agreement should
be reached with the procuring or certificating
agency regarding the test procedures and methods of
correction, if any, prior to conducting major tests.
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3.1. Wings

3.10. GENERAL. Because of the basic differ-
ences 1n their structural behavior, spearate stress
analysis procedures are outlined for the following
general types of wing structures:

{a) Two-spar wings with ladependent spars.
(6} Reinforced shell wings.

3.11. Two-Srar Wings Wite INDEPENDENT
Sears. The methods of analysis presented under
this heading are based on the assumption that the
spars deflect independently in bending. Such meth-
ods are partlculaxlv applicable to two-spar fabric-
covered wings with drag bracing in a single plane.
They may also be applied to two-spar wings hav-
ing drag bracing in two planes. In such cases,
the effect of the torsional rigidity resulting from the
double drag bracing, tending to equalize the
deflections of the two spars, is usually neglected
but may be taken into account by the methods of
reference 3-7.

3.110. Spar loadings. The following method of
determining the running loads on the spars has
been developed to simplify the ecalculations
required and to provide for certain features which
cannot be accounted for in a less general method.
It is equivalent to assuming that the resultant air
and inertia loads at each section are divided

‘between the spars as though the ribs were simple

beams and the spars furnished the reactions.
Frequently, certain items are constant over the
span; then the computations are considerably
simplified.

The net running load on each spar, in pounds

per inch run, can be obtained from the following
equations:

GNoiar 144
4

(C)
”q,%' 144

f

Yr=[{Cx(r—a)+ (‘,M } +1ge (F—7)] ———-

144b
o (3:1)
yr:’[{CN(a_.f)"_a‘lf} _}"N‘"e(j j 144b .
(3:2)
where:

¥,=net running load on front spar, in pounds
per inch

Y-=net running load on rear spar, in pounds
per inch

a, b, 1, j, and r are shown in figure 3~1 and are all
expressed as fractions of the chord at the station in
question. The valie of ¢ must agree with the
value on which ,,, is based.

g=dynamic pressure for the econdition being
investigated.

Cyx and Cy, are the airfoil normal force and
moment coefficients, respectively, at the section
in question.

(" 1s the wing chord, in inches.
¢ 1s the average unit weight of the wing, in
pounds per square foot, over the chord at the
station in question. It should be computed or
estimated for each area included between the
wing stations investigated, unless the unit wing
weight is substantlalh constant, in which case a
constant value may be assurned By properly
correlating the values of e and 7, the effects of
local weights, such as fuel tanks and nacelles, can
be directly accounted for.

2 1s the net limit-load factor representing the
inertia effect of the whole airplane acting at the
center of gravity. The inertia load alwavs acts
in a direction opposite to the net air load. For
positively accelerated conditions ny will always be

fe——C'

Figure 3-1. Unit seclion of a conventional 2-spar wing.
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All vectors are shown in posilive sense.
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Table 3-1. Compulation of net unit loadings (constarntsy

Stations Alogg Span

1 Distence from reot, inches

S f, fraction of chord
4 -r’ H 11 n
5 r=-r =@-©

6 =z, fraction of chord (a.c.)

b =

7 j » L ] "

|18 e

n

9 r-a=®-©
10 a-f=(B-@
‘ 9 r-3=®-0
12 §j-r=0-
15 ¢'/144 b =®/B)

2 ¢1/144 = {chord in inches) /144

*

unit wing wt., lbe/eq.rt.*

* These values will depend om the amsunt of dizposable

load carried in the wing.

negative, and vice versa. Its value and sign are
obtained in the balancing of the airplane.

If it is desired to compute the airloading and
inertia- loadings separately, formulas (341) and
{3:2) may be modified by omitting terms contain-
ing ne for the airloading, and omitting terms con-
taining ¢ for the inertia loading. Then the inertia
loading, shear, and moment curves need be com-
puted for only one condition {say,n.,=1.0), the
values for any other condition being obtained by
multiplying by the proper load factor. -

The computations required in using the preced-
ing method are outlined in tables 3-1 and 3-2, n
a form which is convenient for making calculations
and for checking.

The following modifications and notes apply to
tables 3~1 and 3-2: '

(@) When the curvature of the wing tip pre-
vents the spars from extending to the
extreme tip of the wing, the effect of the
tip loads on the spar can easily be ac-
counted for by extending the spars to
the extreme span as hypothetical mem-
bers. In such cases, the dimesion f will
become negative, as the leading edge will
lie behind the hypothetical front spar.

(3) The local values of Cy, item 14, are

939770351 11

determined from the design values of
C'v in accordance with the proper span-
distribution curve.

{¢) Item 15 provides for a variation in the
local value of (s, When a design value
of center-of-pressure coefficient is speci-
fied, the value of ") should be deter-
mined by the following equation. using
item numbers from tables 3-1 and 3-2.

C’Ma:®[@_ CP’]

(d) When conditions with deflected flaps are
vestigated, the value of () over the
Hlap portion should be properly modified.
For most conditions, (), will have a

{3:3)

constant value over the span.
(e) The gross running loads on the wing
structure can be obtained by assuming
¢ to be zero; then, items @, €, and 9
become zero, ¥, becomes XD, v,
" becomes €9 X @3, and . becomes €9 X ().
3.111. Chord loading. The net chord loading,
in pounds per inch run, can be determined from
the following equation:

- [Clgtng2e] 7
Ye="T42
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Table 3-2. Compulation of ne! unil loadings (variables)

CONDITION wew

P CNi(ets) | C'c cty, or C.Pi ng L
o —— =J
Digtance b from root
(Befer alsc to Table3-4)
14 | cy = (variation with span)

c r - r r— r r— r—

15 !'-"n {varistion with span)

16

]

17

+

18

H

19

M
N

Frent Spar

21 , lbs/inah

22

“

H

26

®

L]

8
©: 0O ®rRO®
eoﬂ©e?@°ﬂe@
® @

Rear Spar
&

$

27{ 3, = €9 x @3, 1ma/inon

28 C‘c {varsation with span)

29:9
ilx a, x@®
Eu @ + @

32! g, = @ x (2, 1ba/ineh

where:
¥.=running chord load, in pounds per inch.
C.=airfoill chord force coefficient at each
station. The proper sign should be retained
throughout the computations. _
n2=net limit chord-load.factor approximately
representing the inertia effect of the whole airplane
m the chord direction. The value and sign are
obtained in the balancing of the airplane. When
C, s negative, n.2 will be positive.
g, ¢, and ¢ are the same as in section 3.110.
The computations for obtaining the chord load
are outlined in table 3-2, items 28 to 32. The
following points should be noted:
(@) The value of C,, 1tem 28, usually can be
assumed to be constant over the span.
The only variation required is in the case
of partial-span wing flaps or siumilar
devices.
(b) The relative location of the wing spars
~ and drag truss will affect the drag-truss
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loading produced by the chord and nor-
mal air forces. This cap easily be
accounted for by correcting the value of
C. (sec. 3.1121).

It is often necessary to consider the local
loads produced by the propeller thrust
and by the drag of items attached to the
wing. The -drag of nacelles built into
the wing is usually so small that it safely
can be neglected. The, drag of inde-
pendent nacelles and that of wing-tip
floats can be computed by using a
rational drag coefficient or drag ares in
conjunction with the design speed. In
general, the effects of nacelles or floats
can be computed separately and added
to the loads obtained in the design
conditions.

3.112. Lift-truss analysis.
3.1120. General. In considering a lift-truss
system for either & monoplane or a biplane and,
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